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The ALICE experiment
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Goals of the WUT team
● Use ALICE and its data as a unique environment to 

advance the Machine Learning field of science
● Identify areas where both ALICE (or HEP in general) 

and ML communities can mutually benefit
● More focus on Machine Learning research rather than 

using standard ML tools for ALICE use cases

● Disclaimer:
– I’m a physicist working with ML experts from the 

WUT IT department
– My task is to guide and coordinate the work of WUT 

ML computer scientists within ALICE
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PID with Machine Learning
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Particle identification
● Particle identification (PID) is one of the most important steps in many 

physics analyses

● Crucial for Quark-Gluon Plasma measurements

● PID is one of the strongest advantages of ALICE:

– practically all knows techniques used (dE/dx energy loss, time-of-
flight, Cherenkov radiation for hadrons and transition radiation for 
electrons)

– possibility to identify (anti-)nuclei

– very good separation of pions, kaons, protons, electrons over a wide 
momentum range

– separation of signals of charged hadrons and electrons for very low 
momenta (down to 0.1 GeV/c) 
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Particle identification

HMPID

ITS TPC

TRD

TOF
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Traditional vs ML PID
● Traditional PID:

– a typical analyzer selects particles 
“manually” by cutting on certain 
quantities, like the number of 
standard deviations of a signal from 
the expected value (nσ)

– most limitations come in the 
regions where signals from 
different particle species cross

– “cut” optimization is a time-
consuming task

● Machine learning PID:

– perfect task for machine learning

– can learn non-trivial relations 
between different track parameters 
and PID

– no “trial and error” approach

https://arxiv.org/pdf/nucl-ex/0505026.pdf
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Proposed solution for PID
● Build a ML classifier that can outperform traditional PID

● Train and validate the classifier on Monte Carlo and real data

● Create a simple interface for users (ALICE physicists):

– first attempts in 2019 (Random Forest) for LHC Run 2 (AliRoot) 
 proof-of-concept work→

– new, much more advanced, project for LHC Run 3 (O2)
 still in research phase→

● Limitations:

● Quality of the classifier will depend on the MC sample (need to 
handle discrepancies between data and MC)

 no MC reweighting done→

● No easy way to calculate systematic uncertainties from the 
procedure

● The classifier is a “black box” - no easy way to tell what’s going on 
inside
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Differences MC vs real data
● The MC distributions don’t usually reflect real data shapes

● This could potentially have an effect on the quality of identification
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LHC Run 2
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Decision tree
● A decision tree is a tree where each node represents a feature (attribute), 

each link (branch) represents a decision (rule) and each leaf represents an 
outcome (categorical or continues value)

● Decision tree learning uses a decision tree to go from observations about 
an item (attributes) to conclusions about the item's target value (leaves)
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Random Forest
● A collection of decision trees (“forest”) where each tree votes for a final 

decision

● Each tree is trained on a subset of randomly selected training data

● The final result is (in most cases) the one with majority of votes

● … in addition, adaptive boosting was used
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Preliminary results
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Results
● Test data sample:

– pp @ 7 TeV, Pythia 6 Perugia-0

● Traditional PID:

–

–

● Machine Learning PID:

– Random Forest classifier

ROC curve

Purity

Efficiency

nσ ,TPC
2

<2 ,  for pT≤0.5  GeV/ c

√nσ ,TPC
2

+nσ ,TOF
2

<2 ,  for pT>0.5  GeV/ c
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TPC accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TPC rejected (not kaons)
Monte Carlo

Traditional PID
Monte Carlo

ML PID

ALICE data
Traditional PID

ALICE data
ML PID

veto on other particles
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TPC contamination in kaon sample

Monte Carlo
Traditional PID

Monte Carlo
ML PID
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Implementation
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ALICE offline framework
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ALICE offline framework

● Two sets of data files:
– Event Summary Data 

(ESD) – full event 
information

– Analysis Object Data 
(AOD) – filtered files, 
subset of information 
for physics analysis AOD
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User Tasks
● Analysis is performed in an automatized way by the 

framework
● Users write their analysis tasks, which are specific C++ 

classes in AliRoot
● Framework provides iterations over files and events
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AliRoot analysis scheme
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AliRoot analysis scheme
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Implementation attemps
● Training part

– Not covered in this talk, done externally to ALICE 
software

– Proposed solution: to be done in a centralized way 
 not implemented finally in AliRoot →

● Classification part
– Classifier (in Python) prepared by an IT student
– Implementation work in AliRoot by a physics 

student
– Different attempts tested based on framework 

limitations 
– Demo/beta version prepared
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Classification – general idea
● Take tracks from AOD files and the trained model (classifier.py) in 

Python

● Propagate AOD tracks through the model to get the ML information 
for each track

● The ML PID information consists of predicted probabilities for PDG 
codes (pion, kaon, proton, electron, muon)

● Present the information to the user

– via specific objects accessible in AliRoot 
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First attempt
● Track-by-track 

implementation

● Framework to iterate over 
events, loop over tracks in 
UserExec()

● Classifier listens in the 
background

● Stripped files sent via pipe

● PID results received via 
another pipe

● The method is VERY SLOW
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Scikit-learn benchmark
● In default track-by-track implementation, with threads, we can 

process only ~9 tracks/s (overhead from the thread creation)  no →
multiple threads allowed on the GRID

● Increase to more than 100 tracks/s if we do not allow threads
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Second attempt
● Propagate multiple tracks 

through the classifier

● Two loops over events needed

– create a temporary 
(stripped) file 

– propagate the temporary 
file through the classifier

– produce predicted.root file

● In the second loop over events 
use a lookup table to match the 
two files

● Solution in AliRoot difficult 
(processing events twice), also 
slower than regular analysis
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Final attempt
● Propagate multiple tracks through the classifier combined from single 

events (do not combine multiple events)

– computational time of a simple pT analysis task with ML PID (scikit-
learn) and without ML PID (one 200 MB AOD file):

Real time 0:00:34 --- Without ML PID

Real time 0:01:33 --- With ML PID

– the analysis with ML PID is 3x slower than without ML PID 

● Python interface not easily available in AliRoot, use the
C++ Random Forest library (for example Ranger) instead of Python

● First tests:

– created a “random” C++ Random Forest of the same size and depth

– compare Ranger and scikit-learn speed tests (next slide)
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Scikit-learn vs Ranger

● Ranger (C++) is slower than scikit-learn (Python)  Python is faster→

● Ranger creates threads even when set to 1
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Working demo/beta example

run macro

user’s analysis task

● User just needs to add a 
couple of lines – like for a 
traditional PID 

 inclusion of the PID →
response task
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LHC Run 3
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PID parameter importance

33

● The algorithm was trained on information from TPC and TOF 
parameterization (which is done before and loaded with “PID response 
task” in the analysis)

● … in the LHC Run 3 we plan to use only raw signals from the detectors 
(TPC dE/dx, TOF time)
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Domain adaptation
● ALICE is undergoing a major upgrade with completely new software 

framework O2

● We plan to explore the Unsupervised Domain Adaptation for ML PID

– problem of transferring the knowledge from a labeled source 
domain to unlabeled target domain, when both domains have 
different distributions of attributes (as in the case of MC and data)

● No implementation in O2 yet, research work ongoing

MNIST and SVHN datasets Visualization of domain adaptation



35/428 September 2021, AI4EIC Łukasz Graczykowski (WUT)

Domain adaptation
● Example domain shift between MC simulated and real data (TPC signal)
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Proposed model
● One versus all based model based on Domain Adversarial Training of 

Neural Networks

● Architecture consists of three neural networks:

– feature mapping network, which maps features of both data sets 
into common, domain invariant latent space

– particle classification network, which classifies particles basing on 
domain invariant latent space

– domain discriminator network, which classifies domain of each 
particle
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First results – proton selection

No Domain Adaptation Domain Adaptation
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LHC Run 3 computing (O2)
● x100 higher data rate

● (Updated) AOD format – calculate as much as possible on-the-fly

● O2 Data Processing Layer (DPL)

– coherent framework from data taking to analysis

● Input data - flat tables (sets of columns) stored as flat ROOT trees
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LHC Run 3 computing (O2)

Anton Alkin, vCHEP 2021
https://indico.cern.ch/event/948465/contributions/4324158/
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LHC Run 3 computing (O2)
● Example analysis task

● Our ML PID model has to fit in this scheme!
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Implementation
● ONNX discussed to be used for storing trained networks

● Very preliminary scheme 
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Summary

● ML-based PID outperforms traditional PID, especially in 
the low momentum region

● Training needed only once for each data set – no need for 
manual cut optimizations

● Quality of final classification more vulnerable to 
discrepancies between MC and real data

● Domain Adaptation techniques look very promising 
 hope to deliver working interface in O→ 2

● Problems encountered in preliminary work:
– track-by-track implementation in AliRoot (optimal 

from our side) is very slow
– C++ <-> Python connection is also a weak point
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Backup
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TOF accepted kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TOF rejected (not kaons)

Monte Carlo
Traditional PID

Monte Carlo
ML PID

ALICE data
Traditional PID

ALICE data
ML PID
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TOF contamination in kaons

Monte Carlo
Traditional PID

Monte Carlo
ML PID
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Deep Convolutional GAN
● Class of architectures which use the convolutional tools and 

deconvolutional layers – mostly used with images

All features Map
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condDCGAN: Conditional DCGAN
● Generator – deconvolutional layers

● Discriminator – convolutional layers

● Network conditioned on particle momenta, mass, and charge

● Output classification – sigmoid function

Input Dense 
1

+act

deConv
1

+act

deConv 
2

+act
deConv 

3
+act

deConv 
4

+act

Input
Conv 3

+act

Conv 4
+act

Dense 
1,2

+act

Output+
sigmoid

100x1 99x1

33x3x1
52x5x50

76x7x30

170x9x40
159x3x40

159x3x1
116x3x50

23x1x50
32x1

32x1

5x1

64x1

px 

py 

pz

m
q

px py pz m q

Output+
sigmoid

159x3x1

deConv 
5

+act

Conv 1
+act

159x3x150 135x3x70

Conv 2 
+act

DiscriminatorGenerator
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condDCGAN+: combined loss
● Training on on the full MC simulations

● Preparing the noise from initial parameters of MC simulations

● Comparing the generated samples with original ones

● Combining origininal conditional GAN loss with the results of 
comparison

49

m - initial parameters (particle momenta), 
X  - original value corresponding to m , 
p(z|m) - distribution of a noise vector under initial parameters m 
z - input into a generator
G and D - generator and discriminator
n - the number of produced clusters Additional parameters  and  are used to α β

weight the share of individual losses. 
Best performing values are  = 0.6 and  = 0.8 α β
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Other areas of research

● Data Quality Assurance – prediction of detector 
quality label assignment 

● Simulation of TPC clusters in Monte Carlo data using 
generative networks 

 next slides→
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Simulation of TPC clusters in 
Monte Carlo data using 

generative networks
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Time Projection Chamber
● Tracking in ALICE is performed by

ITS, TPC, TRD and TOF

● First attempts – focus on the TPC only: 

– main tracking device

– located from 0.8 m (inner radius) to 2.5 m 
(outer radius) from the beam and extending 
~2.5 m in each direction along the beam axis

– volume of 95 m3

– filled with Ne-CO2 gas mixture (90%-10%) 

– clusters - points in 3D space, together with 
the energy loss, which were presumably 
generated by a particle traveling through

– provides up to 159 clusters per track

I.Konorov, Front-end electronics for Time Projection chamber

ALICE Data Preparation Group
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Simulation and reconstruction
● Current process relies on 5 independent modules

● The computationally most expensive module is particle propagation 
through the detector’s matter

Collision 
generator

Particle 
propagation

Electronic 
signals 
(digits)

Digits to 
Clusters Tracking

Monte Carlo 
simulation

Real data

ALICE Data Preparation Group
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Simulation and reconstruction

● Generative solution for cluster simulation:

– substitute the detector simulation and check for the speed-up

– full simulation still needed to generate training samples

– immediate drawback: quality of such MC data can be either 
comparable or lower than the full detector simulation – limits 
potential applications

Collision 
generator

Particles 
propagatio

n

Electronic 
signals 
(digits)

Digits to 
Clusters

Tracking

Noise Generative 
Model
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Generative Adversarial Networks
● Generative Adversarial Network (GAN) is a neural network architecture 

of two networks competing with each other (playing a min-max game)

– “Generator” is trained to produce fake data resembling the real data

– “Discriminator” aims to predict whether an example data is real or 
fake

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator
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Generative Adversarial Networks
● Typical use cases:

– mainly generation of photo quality fake images (i.e. of celebrities)

https://arxiv.org/abs/1710.10196

https://arxiv.org/pdf/1612.00005v1.pdf
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Generative Adversarial Networks
● Extending the GAN architecture – provide a set of initial parameters for 

the generator and discriminator:

– generator would not generate a random output, but a customized one

– in our case: initial momenta of Monte Carlo particles

57

https://giphy.com/gifs/leonardo-dicaprio-catch-me-if-you-can-
5leocharacters-t1h4nnWEWKfn2

https://33milesinnewaygocounty.files.wordpress.com

https://thechive.files.wordpress.com

Discriminator

Generator

Initial Parameters
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TPC clusters with GANs
● It is not (yet!) possible to generate the full 3D image of the event at once 

(especially in the Pb-Pb event)

● Our solution is to:

– generate clusters for single particles

– two separate flows for spatial coordinates (x,y,z) and the energy

– in the beginning focus  only on 3D coordinates

– merge generated samples (individual particles) into full images

– training of the GAN on original full simulations
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Example results
proton kaon

Original event GAN event
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Results
● Mean Squared Error (MSE) from the original helix as a quality measure

● Evaluation conducted on the separate test-set with ~15000 tracks

MSE visualisation:
Red - error
Grey- ideal helix
Orange – original clusters
Blue – generated clusters

Method Mean MSE 
(mm)

Median MSE 
(mm) Speed-up

GEANT3 1.20 1.12 1

Random 
(estimated) 2500 2500  N/A

condLSTM GAN 2093.69 2070.32
100

condLSTM GAN+ 221.78 190.17

condDCGAN 795.08 738.71
25

condDCGAN+ 136.84 82.72
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Computational cost
● Performance test conducted on the standalone machine with Intel Core 

i7-6850K (3.60 GHz) CPU using single core and no GPU

● Additional order of magnitude speed-up for GAN models with nVidia 
Titan Xp GPU
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TOF time

Monte Carlo ALICE data

● From our point of view TOF has a fantastic feature of a possibility to 
calculate mass of the recorded particle and compare it to the one from 
PDG

● Thanks to that we can test contamination independently of MC 
simulations

mTOF
2

=p2( 1
β
−1)
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